Refine Your Search

Topic

Author

Search Results

Technical Paper

The Evaluation Method of Surge on Motorcycles

1997-10-27
978508
We studied the mechanism of occurrence and evaluation of the surge that is produced in motorcycles equipped with 2-stroke cycle engines by simultaneously measuring chassis behavior and combustion. When modal analysis was performed by measuring the acceleration of each chassis component while placing the test vehicle on a chassis dynamo, it was found that pitching, in which the tires serve as springs, and resonance, generated from the rear suspension spring, occurred simultaneously during surge generation. The major component that is felt physically is pitching. Although a certain degree of correlation was observed between fluctuations in combustion and occurrence of pitching, since the drive line contains a large amount of back lash, the system has a high degree of non-linearity, thus making it difficult to obtain a well-defined correlation.
Technical Paper

The Influence of Port Fuel Injection on Combustion of a Small Displacement Engine for Motorcycle

2007-10-30
2007-32-0009
The demands on internal combustion engines for low emissions and fuel consumption are increasing year by year. On the other hand, engines to be used in motorcycles need to provide high output and quick response to meet user desire. In order to realize low fuel consumption while keeping high performance, it is necessary to properly understand cyclic variations during combustion as well as the influence of the injection system on fuel control during transient periods. The current paper reports on the results of a study in the influence of port fuel injection on combustion stability in a small displacement motorcycle engine, using both a series of experiments and CFD. The parameters of the injection systems under study are: (1) injection targeted area, (2) injection timing, and (3) fuel droplet size. The results of the current study show that injection aimed at the upstream wall yielded the best combustion stability.
Technical Paper

The Investigation of Mixture Formation and Combustion with Port Injection System by Visualization of Flame and Wall Film

2011-08-30
2011-01-1887
Mixture formation is one of the most important factors for the combustion in the spark ignition engine with port fuel injection. The relation between combustion and mixture quality, however, is not quantitatively well established. In this study, the connection of combustion and mixture formation was explored with various measurement techniques. Borescopes were used in order to investigate the flame propagation in the combustion chamber and behavior of spray and fuel film on the wall in the intake port. For the purpose of investigation on the effect of mixture formation, various port fuel injection systems and parameters were tested and compared: direction, timing, and size of droplet. An SI engine for small vehicle was used under condition of 4 000 rpm. The investigation by images obtained has shown that inhomogeneity of mixture causes low combustion stability, especially due to direct introduction of fuel droplets into the combustion chamber.
Technical Paper

The Relationship Between Port Shape and Engine Performance for Two-Stroke Engines

1999-09-28
1999-01-3333
Measurement using a three-dimensional anemometric-tester was made for the gas flow inside the cylinder of a two-stroke engine while the shape of the transfer port was modified. The relationship between port shape and engine performance was investigated for various factors that characterize the flow in cylinder. In this paper, we focused mainly on two engine running conditions: the maximum output at 11750 rpm and the output at 10000 rpm. As a result, we found that the maximum output is most related to the tangential inclination angles of the main transfer port, and the inner vent radius of the main transfer duct.
Journal Article

Torque Control of Rear Wheel by Using Inverse Dynamics of Rubber/Aramid Belt Continuous Variable Transmission

2013-10-15
2013-32-9042
This paper concerns a torque control of a rear wheel of a motorcycle equipped with a rubber/aramid belt electronically-controlled continuous variable transmission where a primary sheave position is controlled by an electric motor. In particular, the paper discusses a method to calculate a required engine torque and a required primary sheave position, given reference values of a rear-wheel torque and an engine rotational velocity. The method forms a foundation of a hierarchized traction control where a higher control layer decides an optimal motorcycle motion (rear-wheel torque and engine rotational velocity) and a lower control layer realizes the motion by actuators (engine torque and primary sheave position). Difficulties of the control are due to large mechanical compliance of the rubber/aramid belt, which leads to an inevitable lag from the primary sheave position to a speed reduction ratio.
Technical Paper

Valve Motion Simulation Method for High-Speed Internal Combustion Engines

1985-02-01
850179
Abnormal valve gear vibration is a perennial problem confronting the designer of high-performance 4-stroke engines. It would shorten time and reduce costs if an analytical method could be applied to the prediction of engine valve behavior. This paper describes a method of valve motion simulation for both SOHC and DOHC valve gears through interactive calculation and using computer graphics. The authors tried to set up as simple a simulation model as possible by using modal analysis and modeling techniques. Through setting simulation model parameters and experimental damping factors, a close correlation between calculated and actually measured results was found.
Technical Paper

Visual Study Focused on the Combustion Problem in Gasoline Direct Injection Engine

2003-09-16
2003-32-0014
Combustion phenomena inside the actual Gasoline-Direct-Injection (GDI) engines have been drawing high attention to its emission characteristics as well as its potential to deal with ultra lean mixture. Although the detailed observation is necessary for its improvement, combustion visualization seems to be strangely overlooked for some reason. This study focuses on the direct observation of GDI combustion to clarify the difficulties behind GDI concept by using a test engine of an actual “wall-guided” configuration and by comparing GDI spray quality with diesel spray in a high-pressure constant volume bomb. The results show that some of the problems about GDI combustion seem to be rather essential than easily conquered, which suggests the necessity for another combustion concept.
X